
\
GSPC M a Programming Guidelines

1

.

Daniel H. Roy, Robert V. Nelson

1 INTRODUCTION

A significant Ada effort has been under way at Coddard for the last
tvo years. To ease the center's transition tovard Ada (notably for
future space station projects), a cooperative effort of half a dozen
companies and NASA personnel vas started in 1985 to produce
programming standards and guidelines for the Ada language.

2 APPROACH

Two parallel tracks were pursued:

1. Coding style and Ada statement format.

2 . Portability, efficiency and vhole life cycle issues.

Two documents have been produced so far, one for each track followed.
This paper more specifically deals vith the second one. Both
documents are similar in structure (closely modeled on the Ada LRN)
and were greatly influenced by Nissen and Wallis guidelines ((NV]).
Other documents also had some influence:

o The rationale for Ada [Rationale].

o The IEEE Ada PDL recommended practices document [IEEE-9901.

o Intermetrics BYRON user's guide [Intermetrics].

o Ada in practice (Ausnit, Cohen, Goodenough, and Eanes)
I Sof tech].

o Using Selected Features of Ada INTIS].

o Intellimac's Ada style (Intellimac].

o Regulation for the management of computer resources in
defense systems (MIL-STD-2167) 12167).

Both drafts are currently being merged i n t o an Ada Style document
use by all projects at the NASA Goddard Space Flight Center.

for

D.1.4.1

3 STRUCTURE OF THE DOCUMENT

It was decided early on to model our guide on the Ada Language
Reference Manual (LRM) for the following reason:

1. The LRH gives us a frame of reference that is a standard.
2. By following the LRM, ve can reasonably expect to be

thorough.

3. We intend to illustrate the L R M jargon with good Ada code
examples.

Therefore, the document follovs the numbering of the LRM as closely as
possible, including the appendices. Hovever, in spite of this
convention, our Ada Programming Guidelines are sufficiently self
contained that they can be read without the LRH.

Chapters 1 to 14 of our document closely follov the corresponding LRH
sect ions.

Appendix A of the document (Language Attributes in the LRH) describes
the recommended documentation keywords both for design (user oriented)
and code (programmer oriented).

Appendix B of the document (Predefined Pragmas in the LRH) illustrates
the usage of pragmas.

Appendix C of the document (Predefined Language Environment in the
LRH) gives the Ada source code of a decision deferral package (package
TBD).

Appendix D of the document (Glossary in the LRH) is a glossary of
terms used in the guide and not defined in the LRH.

Appendix E of the document (Syntax Summary in the LRH) is a place
holder for the definition of "Ada LINT", an Ada style and programming
practice analyser. After a consensus has been reached about the
specification of the tool and its command language, this appendix vi11
include:

1. The APSE tool command language syntax and semantics
definition.

2. The directives embedded in Ada documentation, style
specification files, etc.

Appendix F (Implementation Dependent Characteristics in the LRH)
identifies the links, waivers or modifications to the company
standards made necessary by these guidelines.

D.1.4.2

, ,.. ~ ' !. .I.. . I , rc,:: , .I , . .I . ,

.

.

Appendix G is a place holder for the definition of a "pretty printer"
Utility. After a consensus has been reached about the specification
Of the tool and its command language, this appendix will include:

1. The APSE tool command language syntax and semantics
definition.

2. The directives embedded in Ada documentation, format
specification files, etc.

Appendix H is an annotated bibiiogtaphy.
The illustrated, recommended practices and guidelines suggest rules
and provide examples of good Ada design and coding formats to promote
readability, aaintainabili ty and, therefore, portability and
reusability of Ada code.

An effort was made to alleviate the bureaucratic burden (that so often
mars software standards) by concentrating on the programmer's "need to
understand1@ and relying on automated tools for the mechanical (and
subjective) aspects of programming such as indentation, alignment of
tokens, etc. Most such rules are to be localized in an Appendix
(Pretty - printer Definition).
Automated support from simple code templates and comment constructs to
the definition of APSE tools are also considered.

4 EXCERPTS FROM THE GUIDELINES

Figure D.1.4-1 introduces the recommended comment constructs that
allows simple tools to extract PDL or documentation from the Ada
design or code.

The document strives to complement the LRH by illustrating its jargon
with examples whenever possible. Unless the rule is particularly
obvious, a rationale is given (possibly in the form of a bibliography
reference), and an exanrple is proposed. The rules are classified as
either suggestions or strong recommendations. The latter are
underlined for emphasis.

Figure D.1.4-2 to D.1.4-5 show the typical form2.t of the rules given.

The document also draws on the IEEE 990 document (Ada as a Design
Language) to show the smooth progression from Ada design to Ada code
where practical. Figures D.1.4-6 and D.1.4-7 show tvo examples
adapted from the IEEE document.

Finally, because efficiency issues pervade the LRM, the guide
addresses the tradeof fs betveen readability, portability and

D.1.4.3

Y

efficiency vhere appropriate.

5 CONCLUSION

The great richness of the Ada language and grammers for
good-style examples, make Ada programming guidelines an important tool
to smooth the Ada transition.

- - he need of pr

Because of the natural divergence of technical opinions, the great
diversity of our government and private organizations and the novelty
of the Ada technology, the creation of an Ada programming guidelines
document is a difficult and time consuming task. It is also a vital
one.

Steps must now be taken to ensure that the guide is refined in an
organized but timely manner to reflect the groving level of expertise
of the Ada community.

____________-- - - -________
Daniel Roy is a senior member of the technical staff at Century
Computing Inc. vhere he has been working since 1983. He received the
Diplome d'Ingenieur Electronicien (HSEE) from ENSEA in 1973 and the
Diplome d'Etudes Approfondies en Informatique (HSCS) from the
University of Paris VI in 1975.

Robert W. Nelson is a member of the technical staff in the Softvare
Engineering Section at NASA's Coddard Space Flight Center. He
received a B . S in Mathematics from Drexel Institute of Technology and
an H.S. in Numerical Science from Johns Hopkins University.

Authors current address:
Century Computing, Inc., 1100 West street, Laurel, Hd., 20707.
Tel: (301) 953 3330.

Goddard Space Flight Center, Code 522, Greenbelt, Hd. 20771.
Tel: (301) 344 4751.

D.1.4.4

i
\ 2.7 COMMENTS

Comments should convey information not directly expressible in Ada.
The conventions given b e l w are used throughout this document.

(a) Use "--I" to indicate documentation (Intermetrics].
See Appendix A for the recommended documentation template.

(b) Use n--*n to indicate PDL construct [Intermetrics].

Using Ada as a PDL has numerous advantages. See [IEEE-990].

In the example of a function stub belov, the three lines of the
function specification are both documentation and PDL.

subtype INQUIRED VAR TYPE is TBD.SOHE TYPE;
function INQUIRE-INT-(--I Emurate DCL verb for integers --*
PROMPT : STRINE --I ,-*
) return INQUIRED VAR TYPE is --I -,*
type TRY RANGE is range 1 .. TBD.HAX; -- Nr try
INQUIRED-VAR e : INQUIRED - - VAR TYPE := 0;

--* Displays "prompt (min. .max): ''

for TRY in TRY RANGE loop
--* Get unconstrained value
--* Validate and translate unconstrained value
return INQUIRED VAR ; --*

end loop ERROR LOGP; --*

- -

-- Value returned --
begin --* INQUIRE INT

ERROR LOOP: --* Until good data or nr errors > max --*

- end INQUIRE INT ; --* -
See Appendix C for the definition of the decision deferral package
(Package TBD).

Figure D.1.4-1: Rule for comments.

D.1.4.5

3.2.2 Number declarations

(a) DO not use numeric literals except in 5 constant declaration Of
when; ----- f i b r i m u m - gproprGte.
This yields more readable and more maintainable code since a change in
value will be localized to the constant declaration.

-- Circle object characteristics
RADIUS : constant := 10.0; -- meters (constant object)
PI : constant := 3.14159; -- (This is a named number)
CIRCLE AREA := PI * (RADIUS ** 2); -- (2 better than "TWO") -

As a rule, using a constant object is better than using a named number
vhich itself is better than using a numeric literal [NW].

Illustrating the LRM jargon. Figure D.1.4-2:

4.4 EXPRESSIONS

(a) Use parentheses to enhance the readability of expressions [NW].

X := (A + B) * (C / ((D ** 2) + E)) ;

(b) Use static universal expression for constant declaration JNW].

Universal expressions maximize accuracy and portability. Static
expressions eliminate run time overhead.

SMALL-STUFF : constant := 12
KILO : constant := 1000;
MEGA : constant := K ~ L O * KILO;

-- Better than "constant INTEGER : - I '

Note that the declaration of object "MEGA" vould be less portable had
KILO been declared as INTEGER since INTEGER'LAST could be less than
one million on some target systems.

Also note that the folloving declarations are more readable than they
would be using the constants MEGA and KILO above.

type MASS TYPE is FLOAT range 1.0 .. 1.OE12; -- Grams
GRAMS : constant MASS-TYPE := 1.0;
KILOGRAMS : constant MASS TYPE := 1 000.0 * GRAMS;
TONS : constant MASS-TYPE-:= 1 - 000.0 * KILOGRAMS;

Figure D.1.4-3: Discussing the rules.

D.1.4.6

CHAPTER 9

TASKS

(a) Use a task for:

o modeling concurrent objects (such as airplanes in an airport
simulation).

o asynchronous IO (other tasks may run while the IO task is
blocked).

o buffering or providing an intermediary link between
asynchronous activities (buffer, active link between two
passive tasks).

o hardware dependent, application independent functions (device
drivers, interrupt handlers).

o hardware independent, application dependent functions
(monitors, periodic activity, activity that must wait a
specified time for an event, vigilant activity, and activity
requiring a distinct priority).

o programs that run on a distinct processor.

It is imperative that the methodology selected to develop multitasking
systems minimize the number of tasks and provide guidance in the usage
of the numerous tasking features of Ada. See [Cherry-841 for details.

Figure D.1.4-4: Rules and bibliography.

D. 1.4.7

(b) Encapsulate priorities in a package (W] .

The LRH does not specifiy the number of priority levels.
- -

with SYSTEl4;use SYSTEM;
package PRIORITY - LEVELS is
--I Raise:
--I
--I
--I
--I Purpose:
--I
--I Portability:
--I
--I
--I
--I Notes:
--I Change Log:
--I Daniel Roy 1-mar-86 Baseline

-- Makes sense here to shorten declarations
- - I Implementation dependent

The folloving declarations can raise CONSTRAINT ERROR on
some implementations since the number of priori’iy levels
is not defined in tte LRH.

Encapsulate implementation dependent priority definitions.

Some declarations may have to be modified for systems featuring
less than 16 levels,
nay have to become equal to * - LOW in-an 8 levels system.

For instance * HIGH and * HED priorities

LOWEST : constant PRIORITY := PRIORITY’FIRST;
HIGHEST : constant PRIORITY := PRIORITY’LAST;
NR PRIORITY LEVELS : constant POSITIVE := HIGHEST - LOWEST + 1;
AVERAGE : constant PRIORITY := NR - PRIORITY - LEVELS
IDLE : constant PRIORITY := LOWEST;
BACKGROUND LOW : constant PRIORITY := AVERAGE - 6;
BACKGROUND-HED : constant PRIORITY := AVERAGE - 5 ;
BACKGROUND-HIGH - : constant PRIORITY := AVERAGE - 4;
USER LOW : constant PRIORITY := AVERAGE - 3;
USER-HED : constant PRIORITY := AVERAGE - 2;
USER-HIGH : constant PRIORITY := AVERAGE - 1;
FOREEROUND LOW : constant PRIORITY := AVERAGE + 1;
FOREGROUND-HED : constant PRIORITY := AVERAGE + 2;
FOREGROUND-HIGH : constant PRIORITY := AVERAGE + 3;
SYSTEH LOW-: constant PRIORITY := AVERAGE + 4;
SYSTEM-HED : constant PRIORITY := AVERAGE + 5;
SYSTEM-HIGH : constant PRIORITY := AVERAGE + 6;

2;

end PRIORITY - LEVELS; - - I

-- Using priorities
vi th PRIORITY LEVELS;
task NASCOH SERVER is --I Distribute NASCOM blocks
pragma PRTORITY (PRIORITY - LEVELS. SYSTEM - LOW) ;

end NASCOH - SERVER;

Figure D.1.4-5: Adding to Nissen and Wallis.

D.1.4.8

10.2.1 Example of subunits

The following example is adapted from [IEEE-9901 and shovs how t o
defer decisions at design time, using Ada as a PDL.

with TRACKER DATA TYPES; use TRACKER DATA TYPES;
procedure TAfiGET - TRACKER is - - I Raaar e:ho processing

ECHO : ECHO TYPE;
SMOOTHED RAN-GE : SMOOTHED RANGE TYPE;
SMOOTHED-ANGLES - t SMOOTHE~ - ANGLES - TYPE;
package FILTERING ALGORITHMS is - - I Could be later extracted from

--I here and "wi th'ed"
-- I
--I
--I

-
function RANGE SMOOTHING (
RAW ECHO : EFHO TYPE
) return SMOOTHED - RANGE - TYPE;

function ANGLES SMOOTHING (-.-I May be a generic SMOOTHING
RAW ECHO : ECiO TYPE --I function could be written.
) return SMOOTHED - ANGLES - TYPE; --I

end FILTERING - ALGORITHMS; -- I
-- The following postpone implementation decisions -- Simple stubs could be written
function IS - ECHO VALID (
RAW ECHO : E C H ~ TYPE
) return BOOLEAN is separate;

--I
- - I
-- I

package FILTERING-ALGORITHMS is separate;

begin --* TARGET - TRACKER
if IS ECHO VALID (ECHO) then --*

else --* decoy ?

SHO~THED-RANGE : = FILTERING ALGORITHMS. RANGE SMOOTHING (ECHO) ; --*
SMOOTHEDIANCLES : = FILTERIN~-ALGORITHHS. ANGLES-SMOOTHING (ECHO); --*

--* log decoy candidate coordinates
null;

--* IS ECHO - VALID end i f ; -
end TARGET - TRACKER; - - I

Figure D.1.4-6: Using subunits and the TBD package.

D.1.4.9

Note that all types from the TRACKER DATA TYPE; package may have been
fully described (using Ada as a da?a definition language and
TRACKER DATA TYPES as a data dictionary). Another solution is to use
the TBD-packgge I

with TBD;
package TRACKER - DATA TYPES is --I data dictionary
--I Notes:
--I Preliminary desjgn

suhtype ECHO TYPE is TBD.RECORD TYPE:
subtype SMOOTHED RANGE TYPE is TBD.REAL TYPE:
subtype SMOOTHED-ANGLES TYPE is TBD.ARRA-Y-'i'YPE: - -

-- I end TRACKER DATA TYPES; - -

Figure D.1.4-6 (cont.): Using subunits and the TID package.

D. 1.4.10

3

I
t

Decision deferral
Members of the list
Can be INTEGER or ENUMERATION type
We knov more about type nov

but we still defer decisions
about index and element types

l We now knov ve'll need to overload ' I ("

I for our type.

(b) Use generics as a decision deferral technique during design.
[IEEE-990]

generic --I Decision deferral
type LIST TYPE is privatei --I Don't want to bother with details now

function SOfiT (-- I
LIST : LIST TYPE --I
) return L I ~ T - TYPE; --I

- - I Notes:
--I Preliminary design

function SORT (--I --*
LIST : LIST TYPE --I --*
) return LIST TYPE is --I --* - - - I Notes:

--I Preliminary design stub
SORTED LIST : LIST TYPE;

begin --* SORT - -
SORTED LIST := LIST;
return-SORTED LIST; -,*

end SORT; --I -,* -

The above generic unit can be further refined at detailed design time
using the same kind of technique:

-- Adapted from [JEEE-990]
generic --

type ELEH TYPE is private;
type INDEz TYPE is (<>);
type LIST TYPE is array (

wi t h function-"<" (

--
--

INDEX-TYPE range <> --
) of ELEM TYPE; --

LEFT : ELEH TYPE; --
RIGHT : ELEH TYPE --
) return BOOLEAN; -_

function SORT (--
LIST : LIST TYPE --
) return LIST TYPE; --

--

--

- - - I Notes:
- - I Detailed design

Figure D.1.4-7: Using generics to defer decision.

D. 1.4.11

